

Overview on services and heritage

Tribo-Testing for Space

Services to validate your materials and components for Space Mechanisms

AAC (C. Jogl, R. Holzbauer, A. Merstallinger)

Key areas of consulting, testing, research and development activities:

AEROSPACE & ADVANCED COMPOSITES GMBH

A-2700 Wiener Neustadt Viktor Kaplan-Straße 2 Austria

Tel.:+43 2622 90550-0

Email: office@aac-research.at

www.aac-research.at

History of AAC in Space

Space Materials Testhouse under ESTEC-contract

Objectives:

Assistance to ESTEC by characterisation and qualification of materials and processes of industrial suppliers

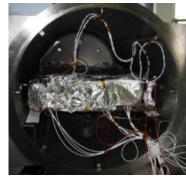
History:

Frame contracts since 1989 as department of AIT (Austrian Inst. of Technology)

Spin-Off to AAC as SME:

Operational since 2010 as privately owned SME Keep synergy Materials AND Space

Roles of AAC in Space


Space Materials Testhouse (contracts to ESTEC > 30 years)

- AAC is an independent SME (no producer),
- Contract to ESTEC covers testing for ESA and Industry
- Proposals from industry selection by ESA

Subcontractor to Industry

- ... in ITTs and ESA projects (testing, development, consultancy)
- Direct, bilateral and confidential contracts

Prime-Contractor to ESA

AAC as Prime contractor (role: testing & consultancy)

Research coordinator (to other programs)

 AAC runs and coordinates R&D-programs on national (FFG) and international (EU) funding schemes

Tribology

- Vacuum tribometer
- Cold welding testing

Testing of bearings, gears, sliprings, ...

Temperatures from -269°C to +300°C

From air to vacuum to Mars

Microstructure

- Metallographic analysis
- SEM / EDX / EBSD / FIB
- 3D profilometry
- (Micro) Hardness

Bake-Out / TVAC-testing

- From materials, to EMs and flight hardware (clean room)
- From small to medium TVAC chambers (30x30cm to 130x180cm)
- from -180°C to +200°C (some +500°C)

A-2700 Wiener Neustadt Viktor Kaplan-Straße 2 Austria Tel.: +43 2622 90550-0

Email: office@aac-research.at www.aac-research.at

Outgassing

- Outgassing acc. to ECSS-Q-ST-70-02
- Kinetic outgassing acc. to ECSS-Q-TM-70-52A
- Vacuum-TGA up to 400 °C
- CME (Coeff. of Moisture Expansion)

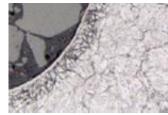
Consulting

- Requirements for space
- Verification plans
- Reviews on materials and processes

Mechanical testing

- Vacuum Pressure: <10-6 mbar
- Different gases under changing pressure
- Temperatures: from -269°C to 2500 °C
- Mechanical Loads: up to 200kN / 70Hz

One-Stop-Shop to Space


AAC's Involvement in Technology Developments for Space (TDA)


(Examples where AAC assists industry to get their products to/de orbit)

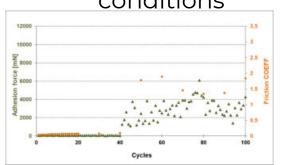
- Development of solid lubrication for Harmonic drives
- Development of solid lubricant cages for Ball bearings
- Heat treatments for SCC-resistance of "space steels", optimisation of nitriding process for PH-steels
- Lubrications concepts for low temperatures (exploration)
- Additive Manufacturing (ALM): qualification of materials, processes
- Multi Layer Insulation (MLI) Nano-Hybrid transparent polymers
- "Demisability of materials"

Tribo-Material & Component Testing - Space Tribology: Test Rigs

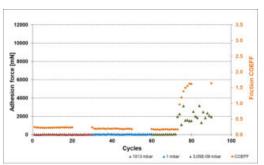
Test rig	Samples /Components	Output	Environment
Vacuum Tribometer	Pin/Ball-Disc Slip-Rings	friction, linear wear el. contact resistance	vacuum, air, CO2 -100 +300°C
Cold Welding Tribometer	Pin-Disc	friction, adhesion	vacuum, air, CO2
Cold weld – Vacuum shaker	3-Pin-on-Disc Cubesats	Adhesion, HDRM-validation	vacuum, air, CO2 -/+50°C
Cryo-Tribometer	3-Pin-on-Disc	friction, lifetime	vac, gHe, -269°C to RT
Journal Bearing Test Rig	Bush-Shaft	torque	vacuum, air, CO2 -100 +300°C
SALOTTE 1 HADES	Gears, brakes, Ball/Plain bearings	torque & life time	vacuum, air, CO2 -170 +250°C
SALOTTE 2 ECM	Pin-Disc/Brush/Wire	friction, el. contact-resistance	vacuum, air, CO2 -100 +300°C
Ball bearing test rig BBT (Vac-HT-Tribometer)	Ball bearings Ring-Ring 3Pin/on-Ring	torque, lifetime, friction	vacuum, air, CO2 RT +200°C (Vac +700°C)
Ball bearing test rig BBT ²	Ball bearings (swiveling)	torque, lifetime, friction	vacuum, air, CO2 -80 +80°C

Tribo-Component Testing - Modular Test Device - HaDES

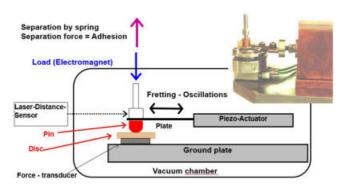
Test item	Top shaft is used as	Bottom shaft is used as	Properties measured (selected)
Harmonic Drive ® Gear	Actuate (<500rpm, 0,7Nm)	Brake (<50Nm)	Efficiency, stiffness, NLRT, TA,
Ball bearing (axial loads)	Actuate (<500rpm, 0,7Nm)	Pre-load changing	Bearing torque (>2mNm) Axial loads
Ball bearing (Bi-axial loads)	Actuate (<500rpm, 0,7Nm)		Bearing torque (>2mNm)
Planetary gear	Brake (<500rpm, 0,7Nm)	(None) use TVAC-motor + torque	Efficiency, axial load
Magnetic brake		None	Detent torque
Actuator (< 0,7Nm)	Brake (<500rpm, 0,7Nm)	None (test item as acuator)	Output torque, ratio to motor current
Actuator (< 50Nm)	None (test item as acuator)	Brake (<10rpm, 50Nm)	Output torque, ratio to motor current
Journal bearings (radial load)	None	Actuate, torque, angle	Bearing torque, radial load force

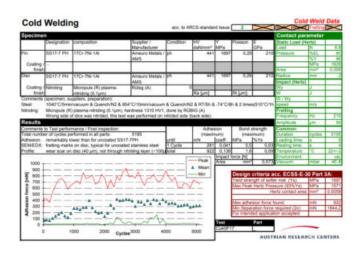

Cold welding – 1/2 - Testing of material pairs

Determination for in-orbit life or for launch (HDRMs, ...)


- Fretting- Pin-On-Disc system
- High vacuum / ambient / gases (Martian)
- Motion representative for HDRMs, end stops, wires, harness, antennas
- Data base for referencing https://coldweld.aac-research.at/

Output


- Separation forces for materials and coatings
- Life time of coatings in launch conditions

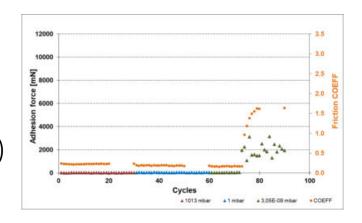

Coldwelding in vacuum

Coldwelding in launch conditions

Fretting (Pin-on-Disc)

Data sheet from Cold Weld Data base

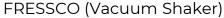
Cold welding -2/2 - Testing of material pairs and Cubesat


Determination of cold welding for launch mechanisms (HDRMs, ...)

- Fretting- Pin-On-Disc system
- High vacuum / ambient / gases (Martian)
- Motion by acceleration representative for HDRMs, end stops, wires, harness, antennas
- FRESSCO vacuum shaker for components (cubesats)

Specimens

- Pins and Discs
- HDRMs (up to 1kg)

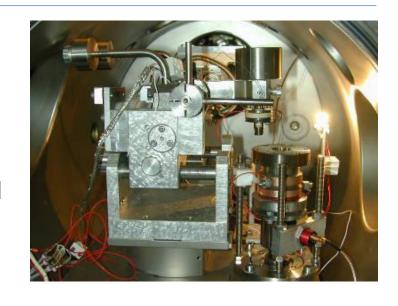


Vacuum shaker for

HDRMs of cube sats

Output

- Separation forces for materials and coatings
- Life time of coatings in launch conditions
- Validate deployment after vibration in vacuum



Tribo-Testing of materials 1/2

PoD to screen new materials, processes, coatings ...

- Pin-On-Disc system
- High vacuum / ambient / gases (Martian)
- Temperatures form -100 to +300°C
- Motion: oscillating (customer profiles) up to unidirectional
- Residual Gas Analysis (optional)

Specimens

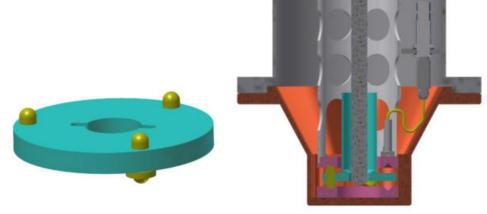
- Pins, balls, cylinders (lying)
- Discs plates, rings

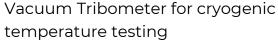
Output

- Friction as function of revs
- Linear wear (on-line)

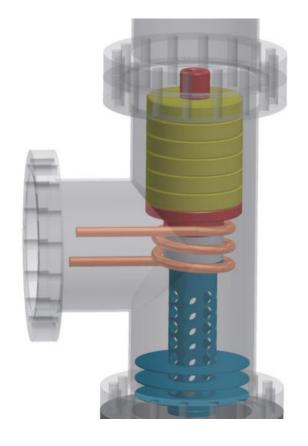
Vacuum Tribometer (Pin-on-Disc)

Tribo-Testing – from Cryogenic to High Temperature 2/2


Determination of friction at extreme temperatures:


- 3-Pin-On-Disc system
- High vacuum or gases (e.g. Martian)
- Oscillating and unidirectional motion

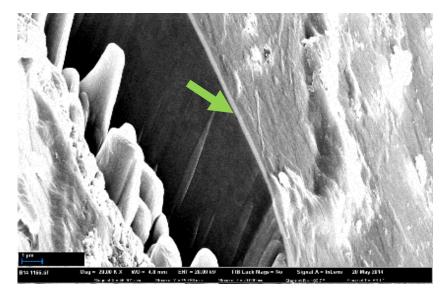
Friction and lifetime in


CryoT: down to 4K

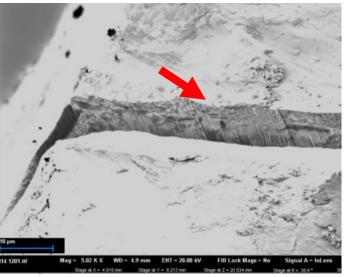
HighT: up to +700°C

3-Pin-specimen and Detail of cold cell

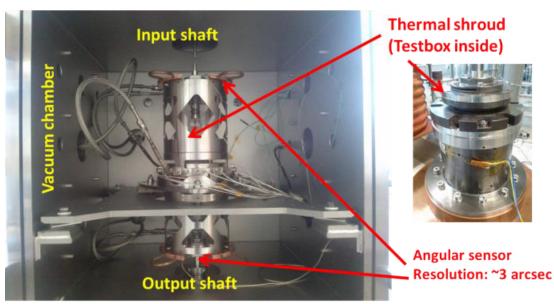
Vacuum Tribometer for high temperature testing



Tribo-Testing – Post analysis


Wear and wear mechanisms:

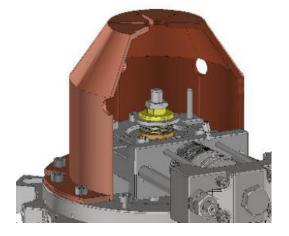
- Determination of volumetric wear (topography)
- Investigation of wear mechanism (SEM)
- Verification of coatings (after testing, FIB)
- Change of Sub-surface microstructure (e.g. FIB)
- Failure analysis of customer components

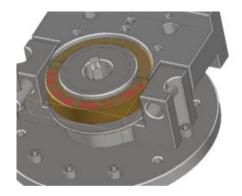

Coating worn off and severe subsurface damages

Tribo-Component Testing - Modular Test Device - HaDES

Testing of gears Harmonic Drive ® gears for use in space:

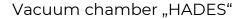
- High Vacuum / planetary (Martian) / ambient
- Input/Output: motors, torque and angle
- Output- torque loads selectable up to 50Nm
- Post test investigation SEM/FIB (e.g. wear, debris)
- Characterisation: Efficiency, stiffness, NLRT, ... >>> life testing




Tribo-Component Testing - Modular Test Device - HaDES

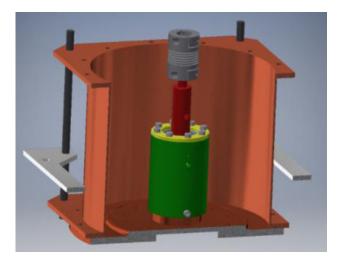
Testing of plain bearings for use in space:

- High Vacuum / planetary (Martian) / ambient
- Input motors: up to 50Nm, customer motion profiles
- Torque and high resolution angle resolvers
- Radial load measured during tensioning
- TVAC from -100°C up to +100°C
- Life tests of commercial bushes in TVAC feasible


Thermal Vacuum Setup with

Insert: to fix commerical bushes up to OD55mm

Commercial bushes can be tested up to 50Nm in TVAC



Tribo-Component Testing – Bi-Axial-Testing of Ball bearings

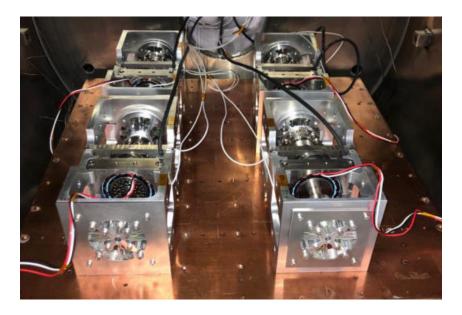
Testing of bearings for use in space:

- High Vacuum / planetary (Martian) / ambient
- From -170°C up to +240°C
- Input motors, torque and angle
- Preloads: axial, radial and combined
- Post test investigation SEM/FIB (e.g. wear, debris)
- Long term Life testing with torque measurement
- Short term test (for deployment mechanisms)

Thermal Vacuum Setup for ball bearings

Setup for testing of linear bearing

NEW: Bi-Axial load and Dynamic-Load for Ball bearings



Development of Test methods – Sviwelling of ball bearings

BBT² - New setup for life tests of bearings under small motions ...

- Environment: Vacuum (10⁻⁵ mbar), Air, N2, Mars (CO₂,15mbar)
- Temperature from -80 to +80°C
- Pre-Loads: TBD (e.g solid lubricated 850MPa, for Type 7004)
- Motion: oscillating from +/-2deg up to unidirectional
- Speed: up to 60Hz (small angles), up to 1000 rpm (unidirectional)
- Measurement of torque: +/- 1mNm, up to 10kHz (for uni at 2 rpm)

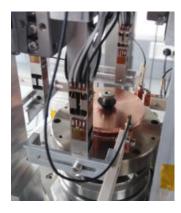
High frequency swivel motion based on bearingless motor

Specimens

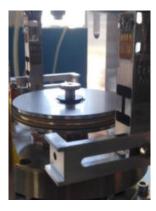
Ball bearings (single or paired)

Output

- Torque as function of revs
- Separately for each bearing (or pair)
- Up to 4 setups controlled independently


Tribo-Component Testing - Electro tribology

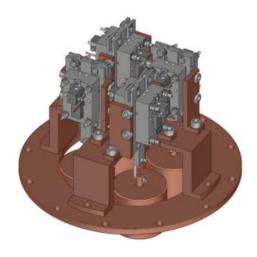
Testing for slip-rings for use in space on component level:

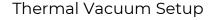

- Max 4 brushes (friction and load forces measured)
- Heatable ring uptake
- High precision resistance measurement
- Post test investigation SEM/FIB (e.g. wear, debris)
- Validation of materials / coatings / lubricants
- Life tests on component level

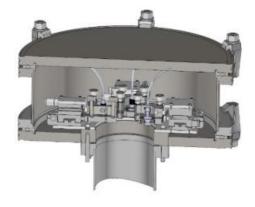
Slipring with wirebrushes

Force measurement

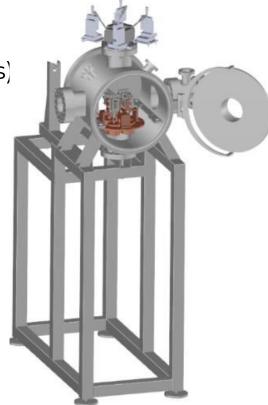
Current / voltage

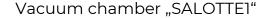

in thermal vacuum environment



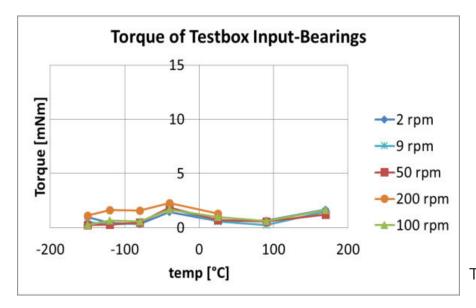

Tribo-Component Testing – Piezo Linear Actuator

Testing of friction pairs for linear actuators (piezo) in thermal vacuum:


- High Vacuum / planetary (Martian) / ambient
- Loading: dead mass load force in motion line
- Temperatures form -100 to +150°C
- Output: lifetime, high resolution motions profiles (laser sensors)
- Post test investigation SEM/FIB (e.g. wear, debris)
- Characterisation: Lifetime, available torque, ... >>> life testing



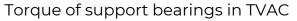
Head for laser position monitoring



Development of Lubrication concepts – Solid Lubricated Bearings

Extend the temperature range of a gear box by solid lubrication

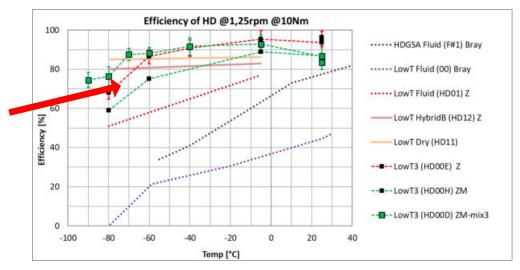
- Low torque few mNm
- Torque almost independent of temperature!
- Minor dependence on speed (increase with speed)
- ➤ Enables testing of Solid Lubricated Harmonic Drive ® gears over wide temperatures including in-situ characterisation

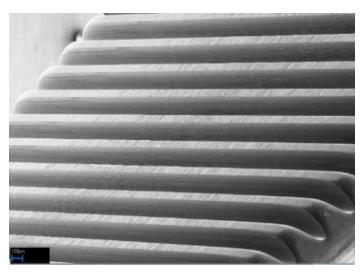


Specimens

- Ball bearings Steel
- Cages made of PTFE-compound (prototype to TS 8591)

Test Box for HD-20-1xx (developed by HDAG)



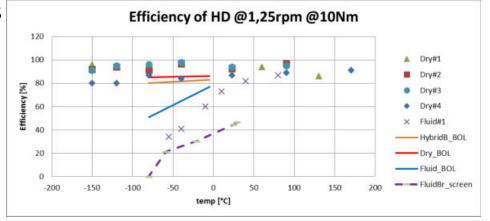

Development of Lubrication concepts for Low Temperatures

Extending the life of a HD gear by combined lubrication ...

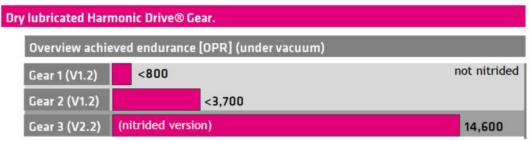
- Appropriate surface treatment of toothing of the gear
- Fluid lubrication in gear toothing, with fluid lubricant optimized to low temperatures
- Solid lubrication in bearings by new PTFE-based polymer (like TS 8591)
- > Enables high efficiency down to -80°C combined with significant increase of life

Efficiency (T) close to fully solid lubrication, but more than 5fold life

No wear on toothing after 48.000 OPR

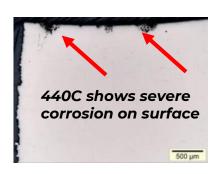


Development of surface processes for Long Life of HD-gears


Extending the life of a HD gear by surface treatments of PH-steels...

- Solid lubricated HD offers high efficiency over wide temperatures, but limited life!
- Nitriding process was optimized towards PH-steels avoiding brittle WEL (white etching layers)
- Gear parts were first nitrided, then Solid lubricant coated (reinforced MoS2)
- Nitriding improves support to MoS₂ coating
- .. and increases the life of the gear in TVAC

Nitrided toothing


Harmonic Drive AG

Heat treatment on bearing steels for SCC-resistance

New HT can be offered for higher SCC resistance on bearing steel:

- Intense work on several steels to derive a heat treatment
- AISI440C threshold only 20% if yield strength, sever corrosion
- Cronidur X30 ~50% of yield strength, no corrosion
- SCC resistance of X30 could be improved to Class 2 (acc. NASA)
- Successful life test of a HD-gear with WG-bearing made of new X30: No signs of degradation in the bearing races
- Further applications like gears now feasible (tensile loaded parts!)

Cross section of specimens after SCC-test showing severe corrosion pits for 440C and nothing for Cronidur X30

Wave Generator Bearing (WGB)

Heat treatment for X30 allows use in tensile loaded parts

AAC test device "HADES" with test box for Harmonic Drive ® Gears

References

Industrial partners:

Aerospace & Advanced Composites GmbH

A-2700 Wiener Neustadt Viktor Kaplan-Straße 2 Austria

Tel.:+43 2622 90550-0

Email: office@aac-research.at

www.aac-research.at

